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Abstract. Fluorescence microscopy methods are an important imaging tech-
nique in cell biology. Due to their depth sensitivity they allow a direct 3-D imag-
ing. However, the resulting volume data sets are undersampled in depth, and the
2-D slices are blurred and noisy. Reconstructing the full 3-D information from
these data is therefore a challenging task, and of high relevance for biologi-
cal applications. We address this problem by combining deconvolution of the
3-D data set with interpolation of additional slices in an integrated variational
approach. Our novel 3-D reconstruction model, Interpolating Robust and Regu-
larised Richardson-Lucy reconstruction (IRRRL), merges the Robust and Regu-
larised Richardson-Lucy deconvolution (RRRL) from [16] with variational inter-
polation. In this paper we develop the theoretical approach and its efficient numer-
ical implementation using Fast Fourier Transform and a coarse-to-fine multiscale
strategy. Experiments on confocal fluorescence microscopy data demonstrate the
high restoration quality and computational efficiency of our approach.

1 Introduction

Imaging science and cell biology have been interwoven since the beginnings of both
fields, when Robert Hooke discovered plant cells with the help of a microscope [9,
Observ. XVIII]. In their continual symbiosis, virtually every advance in each of the
two fields has been inherently linked with the progress of the other discipline. More
than three centuries after Hooke, cell biology forms one of the keystones of today’s life
sciences, and it continues to pose exciting challenges for imaging science.

Three-dimensional imaging of intracellular structures in living cells is one of these
problems. Its solution is of utmost importance for the understanding of life processes,
or influences that interfere with these life processes. For example, nanoparticles play an
increasing role in modern technology, but their inflammatory and toxicological effects
in human cells are hardly understood. This drives the interest of researchers to study
the effects of nanoparticles within cells. Tracing the transport of those tiny objects in a
living cell is an important part of this research.
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While some well-established tools of 3-D imaging such as tomographic methods
turn out impractical for imaging living specimens on the desired scale, one of the
most promising approaches in current imaging that is compatible with the require-
ments of this application field are fluorescence microscopy techniques such as Con-
focal Laser Scanning Microscopy (CLSM) [12] or Stimulated Emission Depletion Mi-
croscopy (STED) [8]. Due to physical limitations, however, these methods have much
lower resolution in depth direction than within a constant depth plane. Also, light con-
tributions from out-of-focus planes cannot be completely suppressed. The low light
intensities involved lead to Poisson noise.

One obtains therefore blurred and noisy data that are severely undersampled in
depth direction. To make them suitable for further analysis in biological research, they
need to be sharpened, denoised, and interpolated to approximately isotropic resolution.
Since measured volumes range up to about 1600× 1600× 50 voxels, computationally
efficient algorithms are needed.

Related work. Deconvolution has been in the focus of image processing research for
a long time. An early and still popular approach is the Richardson-Lucy algorithm [13,
10]. Variational deconvolution methods have been introduced in the nineties [11]. The
minimisation interpretation of Richardson-Lucy deconvolution [14] establishes a rela-
tion between both approaches that has been used to establish Richardson-Lucy type
methods with regularisation [2], specifically in variational formulation [5, 16]. Decon-
volution of confocal microscopy images has been considered recently e.g. in [5, 6].

Variational formulations for interpolation have been considered in [3, 15]. A joint
variational approach for (blind) deconvolution and interpolation of missing image infor-
mation (inpainting) has been proposed in [4]. A variational framework for simultaneous
deblurring and motion estimation has been proposed in [1].

Our contribution. To address the multiple degradation of fluorescence microscopy im-
agery of living cells, we propose a novel variational method for simultaneous deconvo-
lution and interpolation in 3-D. By choosing as deconvolution component the modified
Richardson-Lucy approach of the type of [5, 16], we obtain an efficient fixed point iter-
ation for minimisation.

Structure of the paper. In Section 2 we develop our joint variational deconvolution
and interpolation approach, and derive the fixed point iteration for its optimisation.
Its space-discrete numerical realisation is addressed in Section 3. Section 4 presents
experimental results on confocal microscopy data to demonstrate the reconstruction
quality and efficiency of the model. We end with conclusions in Section 5.

2 Joint Variational Interpolation and Deconvolution

In this section, we present our model for simultaneous interpolation and deconvolu-
tion. It combines variational interpolation methods [3, 15] with the deconvolution model
from [16]. The advantage of the latter is that it leads to a computationally efficient
fixed point iteration similar to Richardson-Lucy deconvolution, called Robust and Reg-
ularised Richardson-Lucy deconvolution. Computational efficiency is crucial since we
aim at reconstructing large fluorescence microscopy 3-D data sets.
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2.1 Deconvolution Model

The deconvolution model from [16] is a modification of the popular Richardson-Lucy
(RL) algorithm [10, 13] which is also in broad use for fluorescence microscopy 3-D
deconvolution, due to its simplicity and computational efficiency. Let the degraded im-
age f , the sharp image u, and the point-spread-function (PSF) h be smooth functions
over Ω = IR3 (or IR2 for 2D images). Then RL generates a sequence of successively
sharpened images u1, u2, ... from the initial image u0 := f via the fixed point iteration

uk+1 =

(
h∗ ∗ f

uk ∗ h

)
· uk . (1)

Here, we denote by h∗ the adjoint of the PSF, h∗(x) := h(−x). In the case of a noise-
free observed image (where f = g∗h is satisfied exactly), the multiplier h∗∗ f

g∗h equals
1. Thus, the sharp image g is a fixed point of (1) in this case.

The single parameter of this method is the number of iterations. With more itera-
tions, the degree of sharpening increases, but at the same time the amount of regulari-
sation sinks. In the presence of (even very low) noise the results will be dominated by
amplified noise after some number of iterations.

The fixed point iteration (1) is associated with the minimisation of the functional

Ef,h[u] :=

∫
Ω

(
u ∗ h− f − f ln u ∗ h

f

)
dx (2)

with respect to a multiplicative perturbation, thus slightly adapting the usual Euler-
Lagrange formalism. This variational viewpoint allows to modify RL by introducing
additional regularisers [5, 16] that provide a more flexible means of structure-preserving
or structure-enhancing regularisation than the original regularisation by stopping. More-
over, robust data terms can be introduced [16]. With both modifications and the abbre-
viation rf (v) := v − f − f ln(v/f), the energy functional reads

Ef,h[u] =

∫
Ω

Φ (rf (u ∗ h)) + α Ψ
(
|∇u|2

)
dx (3)

where both Φ, Ψ : IR+ → IR are increasing penalty functions, and the regularisation
weight α should be chosen dependent on the noise level in the blurred image. The robust
data term not only handles extreme noise, but also copes with imprecisions in the blur
model and the PSF. Assuming multiplicative perturbation, one can derive from (3) an
Euler-Lagrange equation and finally the fixed point iteration, cf. [16]

uk+1 =
h∗ ∗

(
Φ′(rf (u

k ∗ h))
(

f
uk∗h

))
+ α

[
div
(
Ψ ′(|∇uk|2)∇uk

)]
+

h∗ ∗ Φ′(rf (uk ∗ h))− α [div (Ψ ′(|∇uk|2)∇uk)]−
uk (4)

where [z]± := 1
2 (z ± |z|). This iteration is called robust and regularised Richardson-

Lucy deconvolution (RRRL). It achieves an image restoration quality comparable to
state-of-the-art variational deconvolution at a computational cost comparable to that of
the original RL method, see [16].
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2.2 Interpolation Model

In the interpolation part of our approach, we tie up to PDE models for interpolation and
variational image regularisation as were formulated in [3, 15].

Assume that image data is observed in the region D ⊂ Ω and is to be extended to
the entire domain Ω. Taking into account that image data on D are also contaminated
by noise, minimisation of the functional

E[u] =
1

2

∫
D

|u− f |2 dx+ α

∫
Ω

Ψ(|∇u|2) dx (5)

performs simultaneous interpolation and denoising, see [3] with total variation regu-
lariser Ψ(s2) = |s|. The use of a non-quadratic penaliser Ψ ensures that edges are
preserved. For D = Ω, variational denoising is recovered.

2.3 Joint Model

To achieve simultaneous interpolation and deconvolution, we proceed in a similar man-
ner as in [4] where a blind deconvolution approach with quadratic penalisation in the
data term was combined with TV inpainting. We replace the simple data term of (5)
with the deconvolution data term from (3) but evaluate it on the observed domain D
only as in (5). The regulariser is inherited from (5) and acts therefore throughout Ω. We
aim therefore at minimising the functional

E[u] =

∫
D

Φ (rf (u ∗ h))︸ ︷︷ ︸
data

dx+ α

∫
Ω

Ψ(|∇u|2)︸ ︷︷ ︸
smoothness

dx . (6)

Similar as before, the data term herein suppresses deviations from the blur model in
the observed image domain D by asymmetric penalisation of the reconstruction er-
ror. The smoothness term combines structure-preserving denoising in D with structure-
preserving interpolation inΩ \D. One should, however, be aware that due to the convo-
lutions also the direct influence of the data term is not limited to D. The regularisation
weight α > 0 balances the influence of the data and smoothness terms.

In order to compute the minimiser u, we derive again the Euler-Lagrange equation
for a multiplicative perturbation. As in the case of RRRL, this proceeding not only
allows to derive an efficient RL-style fixed point iteration but also ensures that the pos-
itivity of u is strictly preserved. Denoting by χD the characteristic function of D, the
resulting equation reads(

h∗ ∗
(
χDΦ

′(rf (u ∗ h))
(
1− f

u ∗ h

))
− α div

(
Ψ ′(|∇u|2)∇u

))
· u = 0 , (7)

from which we obtain the fixed point iteration

uk+1 =
h∗ ∗

(
χDΦ

′(rf (u
k ∗ h))

(
f

uk∗h

))
+ α

[
div
(
Ψ ′(|∇uk|2)∇uk

)]
+

h∗ ∗ (χDΦ′(rf (uk ∗ h)))− α [div (Ψ ′(|∇uk|2)∇uk)]−
uk . (8)
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We will call this iteration simultaneous interpolation and RRRL deconvolution (IRRRL).
It converges to the steady-state much faster than gradient descent schemes, which are
often used for conventional variational approaches, see [4] for simultaneous interpo-
lation and deconvolution. This will make our method computationally more efficient
than conventional approaches, while at the same time it achieves reconstruction quality
comparable to those approaches.

We remark that classic RL deconvolution [10, 13] as well as regularised RL [5],
robust RL [16] and RRRL [16] are embedded as special cases in IRRRL. An extension
to multi-channel image data is straightforward along the lines of [16]. For more details
we refer to [7].

3 Numerical Aspects

To implement IRRRL for the reconstruction of 3-D images, a discretised version of (8)
is required. In the discretisation of the data terms (i.e. the first term in the numerator and
the first term denominator) at voxel (i, j, l) the expensive 3-D convolution operations
are transferred to the Fourier domain. In order to use a Fast Fourier Transform (FFT)
implementation for which image dimensions need to be powers of two, and to mitigate
wraparound errors, images are extended by mirroring within a suitable stripe around the
image domain. The Fourier strategy considerably improves the computational efficiency
of our model over the direct implementation of the convolutions in the spatial domain.
The characteristic function χD is implemented using a binary image.

For the diffusion term D := div (g ∇u), we found that the discretisation method
does not have a major effect on the performance of our model. Thus, we use the simplest
discretisation based on central differences:

Di,j,l

=
1

h1

(
gi+1,j,l + gi,j,l

2

ui+1,j,l − ui,j,l
h1

− gi,j,l + gi−1,j,l
2

ui,j,l − ui−1,j,l
h1

)
+

1

h2

(
gi,j+1,l + gi,j,l

2

ui,j+1,l − ui,j,l
h2

− gi,j,l + gi,j−1,l
2

ui,j,l − ui,j−1,l
h2

)
+

1

h3

(
gi,j,l+1 + gi,j,l

2

ui,j,l+1 − ui,j,l
h3

− gi,j,l + gi,j,l−1
2

ui,j,l − ui,j,l−1
h3

)
, (9)

where h1, h2, and h3 are the spatial grid sizes in x, y, and z directions, respectively.
The diffusivity g = Ψ ′(|∇u|2) is discretised by

gi,j,l = Ψ ′

((
ui+1,j,l − ui−1,j,l

2h1

)2

+

(
ui,j+1,l − ui,j−1,l

2h2

)2

+

(
ui,j,l+1 − ui,j,l−1

2h3

)2
)
. (10)

In order to speed up the computation, we complement the scheme developped so
far by a coarse-to-fine strategy. On each level (except the coarsest one), the result of
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Fig. 1. Confocal microscopy 3-D image of the filament network of a cell. (a) Left: Slice 12 from
the complete 3-D image (1024 × 1024 × 24 voxels). (b) Right: Corresponding slice from the
clipped 3-D image (Dataset A, 376× 244× 24 voxels).

the next coarser level serves as a fairly good initialisation, which makes the iteration
converge considerably faster.

Since in our case interpolation is used to increase resolution in depth (z) direction,
we implemented the coarse-to-fine approach as follows:

1. Downsample the 3-D image to a coarse scale in x, and y directions.
2. Apply the IRRRL fixed point iteration at the coarse version of the image.
3. Interpolate the solution of the coarse level and use it as an initialisation at the next

finer scale.

In experiments on 3-D cell images the coarse-to-fine strategy boosts the computa-
tional efficiency of IRRRL by more than a factor 4.

4 Experimental Evaluation

In this section, we show experimental results based on real-world data to illustrate the
benefits of the proposed simultaneous model. Note that all computations were per-
formed in 3-D although only exemplary slices are displayed. In all models, we use
as penalisation functions Φ(r) = 2

√
r in the data term, and the Charbonnier function

Ψ(s2) = 2λ
√
1 + s2/λ2 − 2λ in the smoothness term.

The data sets used in the experiment are confocal fluorescence microscopy 3-D
images of the filament network of living cells. Images and 3-D PSFs were provided
by the Nano-Cell Interactions group at the Leibniz Institute for New Materials (INM),
Saarbrücken. The resolution of these data sets in z direction is significantly lower than
in x and y directions. We aim therefore at deblurring these images and at the same time
interpolating a number of additional slices (typically, 1–5 slices) between each pair of
neighbouring slices in z direction, in order to compensate the unequal resolution and
achieve approximately equal voxel dimensions in x, y, and z directions.

Due to the huge image dimensions, 3-D reconstruction of an entire data set was
beyond the memory capacity of available PCs. The experiments presented here were
therefore carried out on cutouts. Fig. 1(a), for example, shows Slice 12 of a confocal
microscopy data set. Its central part represents the filament network of a complete cell,



Simultaneous Interpolation and Deconvolution Model 7

Fig. 2. 3-D reconstruction of Dataset A/2 by 100 iterations of IRRRL with Charbonnier regu-
lariser, α = 0.002. (a) Top left: Slice 8 of Dataset A/2. (b) Top right: Slice 9 of Dataset A/2.
(c) Bottom left: Reconstruction of Slice 8. (d) Bottom right: One of the three slices interpolated
between Slices 8 and 9.

while the outer parts belong to adjacent cells. For our experiments, the number of slices
was retained but all slices were clipped as shown in Fig. 1(b). In the following, this
clipped image will be called Dataset A.

In Dataset A, the voxel size is about 126 nm in depth and 62 nm within the con-
stant depth planes. Interpolating a single slice between each pair of subsequent slices
would actually suffice to make the voxel dimensions almost equal in x, y, and z direc-
tions. For a more informative test of the performance of our method, we remove the
even-numbered slices from the data set. We will refer to this thinned dataset as Dataset
A/2. To compensate for the thinning, each gap between slices of Dataset A/2 should be
filled with three reconstructed slices. On one hand, this makes the problem consider-
ably harder. On the other hand, it enables us to assess the reconstruction quality: Using
sharpened versions of the retained slices from Dataset A as ground truth, we can quan-
tify the reconstruction error of the second of three reconstructed slices. To this end, we
use the average absolute error (AAE).

Fig. 2 illustrates the result of the first experiment. In (a) and (b) subsequent slices
from Dataset A/2 are shown. The reconstruction of the slice in (a) is shown in (c). This
demonstrates the deconvolution quality of IRRRL, since details in the processed slice
(c) are much sharper than in the original slice (a). This makes it easier to track the fila-
ment network of the cell which is essential for microbiological applications like tracing
nanoparticle transport in living cells. The interpolation effect of IRRRL is demonstrated
in Subfigure (d) by one of the three slices interpolated between (a) and (b).
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Fig. 3. Comparison with the sequential approach. (a) Top left: Slice 14 of Dataset A (not present
in Dataset A/2). (b) Top right: Ground truth (Slice 14 after the preprocessing step). (c) Bot-
tom left: Corresponding interpolated slice from IRRRL reconstruction of Dataset A/2. (d) Bot-
tom right: Corresponding interpolated slice from sequential deconvolution and interpolation of
Dataset A/2. Note particularly the unsatisfactory reconstruction in the lower right part.

In Fig. 3 we present further results together with a ground-truth comparison. Sub-
figure (a) shows one of the even-numbered slices of Dataset A which are removed in
A/2. The sharpened version shown in Subfigure (b) is taken from an IRRRL reconstruc-
tion of the undecimated Dataset A. This slice forms the ground truth for our subsequent
comparison. Figure 3(c) shows the second interpolated slice between slices 7 and 8
from our IRRRL reconstruction of the decimated Dataset A/2, which corresponds to
Slice 14 of Dataset A. Indeed, the slices in (c) and (b) are not only visually similar, but
also the AAE between them amounts to a low 4.55, confirming the good quality of the
interpolation. For comparison, the AAE between the sharpened slices 7 and 8 is 16.83.

In our second experiment, we want to demonstrate the advantage of simultaneous
interpolation and deconvolution over a sequential approach that deconvolves the data
first, and then interpolates additional slices. We deconvolve therefore Dataset A/2 by
RRRL and then interpolate the three missing slices using the variational interpolation
model (5). The result is shown in Fig. 3(d). This image corresponds to the same slice as
(b) and (c). The visual impression that the reconstruction quality of (d) is inferior to (c)
is confirmed by the AAE of (d) vs. (b) which is 11.4.

A second example of reconstruction by IRRRL is shown in Fig. 4, based on a dif-
ferent dataset.

Finally, in order to illustrate the computational efficiency of IRRRL, we collect in
Table 1 runtime measurements of IRRRL and a conventional variational approach for
simultaneous deconvolution and interpolation.
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Fig. 4. 3-D reconstruction by IRRRL with Charbonnier regulariser, 100 iterations, α = 0.001.
(a) Left: Slice 5 of a fluorescence microscopy data set (Dataset B, 486 × 297 × 22 voxels). (b)
Right: Interpolated slice between slices 5 and 6.

We start with the conventional method. It consists essentially in a non-blind variant
of the functional from [4] being minimised by gradient descent. For reasonable recon-
struction quality, 500 iterations are needed. A straightforward IRRRL implementation
speeds up the computation by a factor of more than three. Some increase in the com-
putational cost of a single iteration is more than outbalanced by the reduction of the
iteration count to 100 for comparable reconstruction quality.

In both cases so far convolution was computed in the spatial domain. Since the con-
focal microscopy blur kernel has fairly large spatial dimensions, it is beneficial to use
instead an FFT-based convolution via the Fourier domain. In our example, this achieves
a speed-up factor of about thirteen. In a last step, we improve this method further by
introducing the coarse-to-fine strategy with just two scales, thereby increasing the speed
roughly to fourfold.

5 Conclusion and Future Work

We have developped an integrated variational approach for 3-D image deconvolution
and interpolation that does not only deliver reconstruction in high quality but also allows
efficient numerical implementation by means of a fixed point iteration similar to the
Richardson-Lucy algorithm. Further speed-up was achieved by transferring convolution
operations to the Fourier domain via FFT, and a coarse-to-fine strategy.

Table 1. Approximate computational expense of the conventional variational simultaneous inter-
polation and deconvolution model and different implementations of the IRRRL model. Compu-
tation times refer to a single-threaded calculation on a Core2Duo CPU running at 2.00 GHz.

Implementation Iterations Computation Reduction factor w.r.t.
time (m) conventional implementation

conventional 500 6020 1
Spatial 100 1791 3.36
Fourier-spatial 100 135 44.59
Coarse-to-fine 20-20 33 182.42
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Future work will be directed to integrate this method with other image processing
tools for 3-D confocal microscopy data into efficient software for cell biological re-
search. Moreover, improvements of the model like edge-enhancing regularisers will be
investigated. Concerning the implementation, 3-D image processing is highly demand-
ing in terms of time and memory, so further algorithmic optimisation in both parameters
is another topic of ongoing research.
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